Compare commits

...

4 Commits

Author SHA1 Message Date
fde76ca5c8 fix: violating strict aliasing rules in most areas in the new code.
Yes, I am aware there are plenty of violations in `conf.c`, but I'll
likely fix/rewrite those when I will use it. Since there are some other
changes I think I'll want to make.
2025-09-04 11:35:52 +02:00
0754c21d53 add a flag when debugging to generate SIGFPE when signed integer overflow occurs. (this is UB) 2025-09-04 11:35:52 +02:00
2d491435e3 add comments to point at where strict aliasing occurs in data scripts
this is definitely not all of them, a thorough rewrite must take place
to fix as many as we can.
2025-09-04 11:35:52 +02:00
be33f78109 Use void * over u8 *, to be more explicit we're working with raw data, and not just bytes.
The main problem with all my buffer-parsing code so-far is that they
often... always break strict aliasing rules.
Using a `void *` will make these bugs more explicit / noticable.
2025-09-04 11:35:52 +02:00
5 changed files with 113 additions and 80 deletions

View File

@@ -14,7 +14,7 @@ MARCH ?= $(shell uname -m)
KERNEL ?= $(shell uname -s | tr '[:upper:]' '[:lower:]')
# compilation flags
CFLAGS += -c -std=gnu99 -Wall -Wextra -Wpedantic -MMD -MP
CFLAGS += -c -std=gnu99 -Wall -Wextra -Wpedantic -MMD -MP -Wno-pointer-arith
LDFLAGS += -flto
# architecture/OS detection
@@ -38,14 +38,14 @@ endif
ifeq ($(DEBUG),1)
PROF = dbg
CFLAGS += -UNDEBUG -Og -g -Wextra -Wpedantic
CFLAGS += $(if $(filter 1,$(ISWIN)),,-fsanitize=address,undefined)
LDFLAGS += $(if $(filter 1,$(ISWIN)),,-fsanitize=address,undefined)
CFLAGS += $(if $(filter 1,$(ISWIN)),,-fsanitize=address,undefined) -ftrapv
LDFLAGS += $(if $(filter 1,$(ISWIN)),,-fsanitize=address,undefined) -ftrapv
# |--profile: testing
else ifeq ($(DEBUG),test)
PROF = test
CFLAGS += -UNDEBUG -O2 -g
CFLAGS += $(if $(filter 1,$(ISWIN)),,-fsanitize=address)
LDFLAGS += $(if $(filter 1,$(ISWIN)),,-fsanitize=address)
CFLAGS += $(if $(filter 1,$(ISWIN)),,-fsanitize=address) -ftrapv
LDFLAGS += $(if $(filter 1,$(ISWIN)),,-fsanitize=address) -ftrapv
else
PROF = rel
CFLAGS += -DNDEBUG -O2

View File

@@ -11,14 +11,13 @@
#include "../util/intdef.h"
#define TABLE 0x2000 // table byte size
#define TABLE 0x800 // table (total) element count
#define SECTOR 0x1000 // sector size
#define CHUNKS 0x400 // amount of chunks in a file
/* Moves chunks `src_s` to `src_e` (inclusive) from `src`, back onto `dst`. */
static void mvchunks(u8 *restrict buf, u8 *src, u8 *dst, int src_s, int src_e) {
static void mvchunks(u32 *restrict table, void *src, void *dst, int src_s, int src_e) {
assert(src > dst);
u32 *table = (u32 *)buf;
size_t len = src - dst; // acquire the amount of bytes that we shall move
assert(!(len % SECTOR));
@@ -34,9 +33,8 @@ static void mvchunks(u8 *restrict buf, u8 *src, u8 *dst, int src_s, int src_e) {
/* Deletes chunk `sidx` by moving chunks up to `eidx` back over `sidx` in `buf`.
* `rmb` is an optional additional offset that can be applied, and signifies bytes already removed.
* Returns the bytes removed by this function. */
static size_t delchunk(u8 *restrict buf, size_t rmb, int sidx, int eidx) {
static size_t delchunk(void *restrict buf, u32 *restrict table, size_t rmb, int sidx, int eidx) {
// load the table data
u32 *table = (u32 *)buf;
size_t slen, bidx, blen;
slen = be32toh(table[sidx]) & 0xFF; // acquire the sector length of the chunk
bidx = (be32toh(table[sidx]) >> 8) * SECTOR; // acquire and compute the byte offset the chunk starts at
@@ -47,24 +45,29 @@ static size_t delchunk(u8 *restrict buf, size_t rmb, int sidx, int eidx) {
table[sidx + CHUNKS] = htobe32(time(NULL)); // assign the current time to the timestamp, for correctness NOTE: might need to zero-out instead
// move the succeeding chunks over the deleted chunk
u8 *dst = buf + bidx - rmb;
u8 *src = buf + bidx + blen;
void *dst = buf + bidx - rmb;
void *src = buf + bidx + blen;
mvchunks(buf, src, dst, sidx, eidx - 1);
return blen;
}
/* Just call `delchunk` with the parameters and some defaults.
/* Call `delchunk` with the parameters and some defaults. Ensuring the table is copied correctly as well.
* This is done instead of `delchunk` being globally linked, because
* `delchunk` requests more specific parameters, which is confusing outside this module. */
size_t mcx_delchunk(u8 *restrict buf, int chunk) {
return delchunk(buf, 0, chunk, CHUNKS);
size_t mcx_delchunk(void *restrict buf, int chunk) {
u32 table[TABLE];
memcpy(table, buf, sizeof(table));
size_t res = delchunk(buf, table, 0, chunk, CHUNKS);
memcpy(buf, table, sizeof(table));
return res;
}
size_t mcx_delchunk_range(u8 *restrict buf, int start, int end) {
size_t mcx_delchunk_range(void *restrict buf, int start, int end) {
assert(start < end && end < CHUNKS);
u32 *table = (u32 *)buf;
u8 *dst = buf + (be32toh(table[start]) >> 8) * SECTOR;
u8 *src = buf + (be32toh(table[end]) >> 8) * SECTOR;
u32 table[TABLE];
memcpy(table, buf, sizeof(table));
void *dst = buf + (be32toh(table[start]) >> 8) * SECTOR;
void *src = buf + (be32toh(table[end]) >> 8) * SECTOR;
src += (be32toh(table[end]) & 0xFF) * SECTOR;
// zeroes-out the chunk data within this range. (and set the timestamp)
@@ -77,6 +80,7 @@ size_t mcx_delchunk_range(u8 *restrict buf, int start, int end) {
// move the remaining chunks down
if (end < (CHUNKS - 1))
mvchunks(buf, src, dst, end, (CHUNKS - 1));
memcpy(buf, table, sizeof(table));
return src - dst;
}
@@ -89,24 +93,29 @@ static int cmp_chunkids(const void *restrict x, const void *restrict y) {
/* Sorts the chunks marked for deletion from smallest to greatest index.
* Then performs the deletion in this order. Making sure to only update the chunks up to the next. */
size_t mcx_delchunk_bulk(u8 *restrict buf, const u16 *restrict chunks, int chunkc) {
size_t mcx_delchunk_bulk(void *restrict buf, const u16 *restrict chunks, int chunkc) {
// ensure the chunks ids we're working on are sorted from least to greatest
u16 chunkids[chunkc + 1];
memcpy(chunkids, chunks, chunkc);
qsort(chunkids, chunkc, sizeof(int), cmp_chunkids);
chunkids[chunkc] = CHUNKS; // set the spare chunk to the max chunks, so the rest of the chunks are moved
u32 table[TABLE];
memcpy(table, buf, sizeof(table));
size_t rmb = 0;
for (int i = 0; i < chunkc; i++)
rmb += delchunk(buf, rmb, chunkids[i], chunkids[i + 1]);
rmb += delchunk(buf, table, rmb, chunkids[i], chunkids[i + 1]);
memcpy(buf, table, sizeof(table));
return rmb;
}
/* Sum together the 4th byte in each location integer to compute the sector size of all chunks.
* Multiplying by `SECTOR`, and adding the size of the table itself. */
size_t mcx_calcsize(const u8 *restrict buf) {
size_t mcx_calcsize(const void *restrict buf) {
size_t size = 0;
for (uint i = 0; i < CHUNKS; i++)
size += *(buf + (i * 4) + 3);
return (size * CHUNKS) + TABLE;
size += *(u8 *)(buf + (i * 4) + 3);
return (size * CHUNKS) + (TABLE * 4);
}

View File

@@ -18,20 +18,20 @@ struct mcx_chunk {
* The chunk's location data shall become `0`, and timestamp data the current time.
* All succeeding chunks shall be moved back, freeing space.
* Returns the amount of bytes removed. */
size_t mcx_delchunk(u8 *restrict buf, int chunk) NONNULL((1));
size_t mcx_delchunk(void *restrict buf, int chunk) NONNULL((1));
/* Deletes the range defined by `start`—`end` (inclusive) of chunks out of `buf`.
* The chunk's location data shall become `0`, and timestamp data the current time.
* All succeeding chunks shall be moved back, freeing space.
* Returns the amount of bytes removed */
size_t mcx_delchunk_range(u8 *restrict buf, int start, int end) NONNULL((1));
size_t mcx_delchunk_range(void *restrict buf, int start, int end) NONNULL((1));
/* Deletes a `chunkc` chunks from `chunks` out of `buf`.
* If the `chunks` indices are known to be sequential, i.e. have a constant difference of `1`, `mcx_delchunk_range` should be preferred.
* The chunk's location data shall become `0`, and timestamp data the current time.
* All succeeding chunks shall be moved back, freeing space.
* Returns the amount of bytes removed */
size_t mcx_delchunk_bulk(u8 *restrict buf, const u16 *restrict chunks, int chunkc) NONNULL((1, 2));
size_t mcx_delchunk_bulk(void *restrict buf, const u16 *restrict chunks, int chunkc) NONNULL((1, 2));
/* Computes the byte size of the `*.mcX` file in `buf` and returns it. */
size_t mcx_calcsize(const u8 *restrict buf) NONNULL((1)) PURE;
size_t mcx_calcsize(const void *restrict buf) NONNULL((1)) PURE;

View File

@@ -12,28 +12,52 @@
#define MAX_DEPTH 512
/* Extracts a big endian 16 bit integer from address `buf`, converts it to host byte size if needed and returns. */
static inline u16 buftoh16(const void *restrict buf) {
u16 i;
memcpy(&i, buf, sizeof(i));
return be16toh(i);
}
/* Extracts a big endian 32 bit integer from address `buf`, converts it to host byte size if needed and returns. */
static inline u32 buftoh32(const void *restrict buf) {
u32 i;
memcpy(&i, buf, sizeof(i));
return be32toh(i);
}
/* Extracts a big endian 64 bit integer from address `buf`, converts it to host byte size if needed and returns. */
static inline u64 buftoh64(const void *restrict buf) {
u64 i;
memcpy(&i, buf, sizeof(i));
return be64toh(i);
}
/* Processes the incoming array data in `buf`. Which contains `nmem` items of `size`.
* The data shall be converted to little-endian on little-endian systems
* Outputs the allocated data to `out`, returns where the next pointer would be. */
static const u8 *procarr(const u8 *restrict buf, i32 nmem, uint size, struct nbt_array *restrict *restrict out) {
size_t len = nmem * size;
*out = malloc(sizeof(struct nbt_array) + len);
if (!*out) return buf + len;
static const void *procarr(const void *restrict buf, i32 nmemb, uint size, struct nbt_array *restrict out) {
size_t len = nmemb * size;
*out = (struct nbt_array){
out->nmemb = nmemb,
out->dat = malloc(len),
};
if (!out->dat)
return buf + len;
memcpy((*out)->dat, buf, len);
(*out)->len = nmem;
memcpy(out->dat, buf, len);
buf += len;
/* Only include this code for little-endian systems. Since only they require this logic.
* Producing optimised code for other platforms. */
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
if (size == 1) return buf;
size_t i = 0;
while (i < len) {
i32 i = 0;
while (i < nmemb) {
switch (size) {
case 2: *(u16 *)((*out)->dat + i) = be16toh(*(u16 *)((*out)->dat + i)); break;
case 4: *(u32 *)((*out)->dat + i) = be32toh(*(u32 *)((*out)->dat + i)); break;
case 8: *(u64 *)((*out)->dat + i) = be64toh(*(u64 *)((*out)->dat + i)); break;
case 2: ((u16 *)out->dat)[i] = be16toh(((u16 *)out->dat)[i]); break;
case 4: ((u32 *)out->dat)[i] = be16toh(((u32 *)out->dat)[i]); break;
case 8: ((u64 *)out->dat)[i] = be16toh(((u64 *)out->dat)[i]); break;
default: __builtin_unreachable(); // this should be impossible
}
i += size;
@@ -43,12 +67,10 @@ static const u8 *procarr(const u8 *restrict buf, i32 nmem, uint size, struct nbt
}
/* calls `procarr` for the simple types available. */
static const u8 *proclist(const u8 *restrict buf, struct nbt_array *restrict *restrict out) {
static const void *proclist(const void *restrict buf, struct nbt_array *restrict out) {
uint size;
*out = NULL;
switch (*buf) {
switch (*(u8 *)buf) {
case NBT_I8: size = 1; break;
case NBT_I16: size = 2; break;
case NBT_I32: // fall through
@@ -59,39 +81,41 @@ static const u8 *proclist(const u8 *restrict buf, struct nbt_array *restrict *re
}
buf++;
i32 len = (i32)be32toh(*(u32 *)buf);
i32 len;
memcpy(&len, buf, 4);
len = be32toh(len);
buf += 4;
return procarr(buf, len, size, out);
}
const u8 *nbt_proctag(const u8 *restrict buf, u16 slen, void *restrict out) {
const u8 *ptr, *tmp;
const void *nbt_proctag(const void *restrict buf, u16 slen, void *restrict out) {
const void *ptr, *tmp;
ptr = buf + 3 + slen;
i32 nmem;
uint size;
switch (*buf) {
case NBT_I8: *(u8 *)out = *ptr; return ptr + 1;
case NBT_I16: *(u16 *)out = be16toh(*(u16 *)ptr); return ptr + 2;
switch (*(u8 *)buf) {
case NBT_I8: *(u8 *)out = *(u8 *)ptr; return ptr + 1;
case NBT_I16: *(u16 *)out = buftoh16(ptr); return ptr + 2;
case NBT_I32: // fall through
case NBT_F32: *(u32 *)out = be16toh(*(u32 *)ptr); return ptr + 4;
case NBT_F32: *(u32 *)out = buftoh32(ptr); return ptr + 4;
case NBT_I64: // fall through
case NBT_F64: *(u64 *)out = be16toh(*(u64 *)ptr); return ptr + 8;
case NBT_F64: *(u64 *)out = buftoh64(ptr); return ptr + 8;
case NBT_STR: nmem = be16toh(*(u16 *)ptr), size = 1, ptr += 2; break;
case NBT_ARR_I8: nmem = be32toh(*(u32 *)ptr), size = 1, ptr += 4; break;
case NBT_ARR_I32: nmem = be32toh(*(u32 *)ptr), size = 4, ptr += 4; break;
case NBT_ARR_I64: nmem = be32toh(*(u32 *)ptr), size = 8, ptr += 4; break;
case NBT_STR: nmem = buftoh16(ptr), size = 1, ptr += 2; break;
case NBT_ARR_I8: nmem = buftoh32(ptr), size = 1, ptr += 4; break;
case NBT_ARR_I32: nmem = buftoh32(ptr), size = 4, ptr += 4; break;
case NBT_ARR_I64: nmem = buftoh32(ptr), size = 8, ptr += 4; break;
case NBT_LIST:
return proclist(ptr, (struct nbt_array **)out);
return proclist(ptr, (struct nbt_array *)out);
return tmp;
default: return NULL;
}
return procarr(ptr, nmem, size, (struct nbt_array **)out);
return procarr(ptr, nmem, size, (struct nbt_array *)out);
}
@@ -99,22 +123,22 @@ const u8 *nbt_proctag(const u8 *restrict buf, u16 slen, void *restrict out) {
* `ptr` is assumed to be the start of the `NBT_LIST` data, e.i. The list's ID, followed by the list's length.
* If `ID` is `NBT_I8`, `NBT_I16`, `NBT_I32`, `NBT_I64`, `NBT_F32`, or `NBT_F64`, the entire list length is computed and returned.
* For other types this won't be possible, and thus will add `1` to `dpt`, and write the list data to `lens` and `tags` at this new `dpt`. */
static const u8 *nexttag_list(const u8 *restrict ptr, uint *restrict const dpt, i32 *restrict const lens, u8 *restrict const tags) {
const u8 *tag = ptr;
static const void *nexttag_list(const void *restrict ptr, uint *restrict const dpt, i32 *restrict const lens, u8 *restrict const tags) {
const void *tag = ptr;
ptr++;
switch (*tag) {
switch (*(u8 *)tag) {
case NBT_END: break;
case NBT_I8: ptr += (i32)be32toh(*(u32 *)ptr) * 1; break;
case NBT_I16: ptr += (i32)be32toh(*(u32 *)ptr) * 2; break;
case NBT_I8: ptr += (i32)buftoh32(ptr) * 1; break;
case NBT_I16: ptr += (i32)buftoh32(ptr) * 2; break;
case NBT_I32: // fall through
case NBT_F32: ptr += (i32)be32toh(*(u32 *)ptr) * 4; break;
case NBT_F32: ptr += (i32)buftoh32(ptr) * 4; break;
case NBT_I64: // fall through
case NBT_F64: ptr += (i32)be32toh(*(u32 *)ptr) * 8; break;
case NBT_F64: ptr += (i32)buftoh32(ptr) * 8; break;
default:
// TODO: handle out of bounds... Might not be required if we use flexible array member
(*dpt)++;
tags[*dpt] = *tag;
lens[*dpt] = (i32)be32toh(*(u32 *)ptr);
tags[*dpt] = *(u8 *)tag;
lens[*dpt] = (i32)buftoh32(ptr);
break;
}
ptr += 4;
@@ -127,16 +151,16 @@ static const u8 *nexttag_list(const u8 *restrict ptr, uint *restrict const dpt,
* - `lens` shall contain `MAX_DEPTH` of items representing the list length, if the current item is non-zero we shall assume we're in a list.
* Where the value is decremented until we reach `0`.
* - `tags` shall contain `MAX_DEPTH` of items representing the list's stored type. */
static const u8 *nexttag(const u8 *restrict tag, uint *restrict const dpt, i32 *restrict const lens, u8 *restrict const tags) {
static const void *nexttag(const void *restrict tag, uint *restrict const dpt, i32 *restrict const lens, u8 *restrict const tags) {
u8 type;
const u8 *ptr = tag;
const void *ptr = tag;
if (lens[*dpt]) {
type = tags[*dpt];
lens[*dpt]--;
*dpt -= !lens[*dpt];
} else {
type = *tag;
ptr += be16toh(*(u16 *)(tag + 1)) + 3;
type = *(u8 *)tag;
ptr += buftoh16(tag + 1) + 3;
}
switch (type) {
@@ -147,10 +171,10 @@ static const u8 *nexttag(const u8 *restrict tag, uint *restrict const dpt, i32 *
case NBT_I64: // fall through
case NBT_F64: ptr += 8; break;
case NBT_ARR_I8: ptr += 4 + (i32)be32toh(*(u32 *)ptr) * 1; break;
case NBT_ARR_I32: ptr += 4 + (i32)be32toh(*(u32 *)ptr) * 4; break;
case NBT_ARR_I64: ptr += 4 + (i32)be32toh(*(u32 *)ptr) * 8; break;
case NBT_STR: ptr += 2 + (u16)be16toh(*(u16 *)ptr) * 1; break;
case NBT_ARR_I8: ptr += 4 + (i32)buftoh32(ptr) * 1; break;
case NBT_ARR_I32: ptr += 4 + (i32)buftoh32(ptr) * 4; break;
case NBT_ARR_I64: ptr += 4 + (i32)buftoh32(ptr) * 8; break;
case NBT_STR: ptr += 2 + (u16)buftoh16(ptr) * 1; break;
case NBT_END: (*dpt)--; break;
case NBT_COMPOUND: (*dpt)++; break;
@@ -169,8 +193,8 @@ static const u8 *nexttag(const u8 *restrict tag, uint *restrict const dpt, i32 *
* - compound:list:int32
* - string
*/
const u8 *nbt_nexttag(const u8 *restrict buf) {
const u8 *tag;
const void *nbt_nexttag(const void *restrict buf) {
const void *tag;
u8 tags[MAX_DEPTH] = {0};
i32 lens[MAX_DEPTH] = {0};
uint dpt = 0;

View File

@@ -37,8 +37,8 @@ enum nbt_tagid {
};
struct nbt_array {
i32 len;
u8 dat[];
i32 nmemb;
void *dat;
};
@@ -49,8 +49,8 @@ struct nbt_array {
* if `buf` points to `NBT_I8`, `NBT_I16`, `NBT_I32`, `NBT_I64`, `NBT_F32`, or `NBT_F64`, `*out` is assumed
* to have the available byte width for one of these types. In the case of `NBT_ARR*` and `NBT_LIST`
* it must point to a `struct nbt_array*`. Where in the case of `NBT_LIST`, it must be one of the previous static-width types. */
const u8 *nbt_proctag(const u8 *restrict buf, u16 slen, void *restrict out) NONNULL((1, 3));
const void *nbt_proctag(const void *restrict buf, u16 slen, void *restrict out) NONNULL((1, 3));
/* searches for the end of a named tag without processing data, the final pointer is returned.
* `NULL` is returned upon failure, the otherwise returned pointer is not guaranteed to be valid. */
const u8 *nbt_nexttag(const u8 *restrict buf) NONNULL((1)) PURE;
const void *nbt_nexttag(const void *restrict buf) NONNULL((1)) PURE;