/* Copyright (c) 2025 Quinn * Licensed under the MIT Licence. See LICENSE for details */ #include "nbt.h" #include #include #include #include #include #include "../util/intdef.h" #define MAX_DEPTH 512 /* Extracts a big endian 16 bit integer from address `buf`, converts it to host byte size if needed and returns. */ static inline u16 buftoh16(const void *restrict buf) { u16 i; memcpy(&i, buf, sizeof(i)); return be16toh(i); } /* Extracts a big endian 32 bit integer from address `buf`, converts it to host byte size if needed and returns. */ static inline u32 buftoh32(const void *restrict buf) { u32 i; memcpy(&i, buf, sizeof(i)); return be32toh(i); } /* Extracts a big endian 64 bit integer from address `buf`, converts it to host byte size if needed and returns. */ static inline u64 buftoh64(const void *restrict buf) { u64 i; memcpy(&i, buf, sizeof(i)); return be64toh(i); } /* Processes the incoming array data in `buf`. Which contains `nmem` items of `size`. * The data shall be converted to little-endian on little-endian systems * Outputs the allocated data to `out`, returns where the next pointer would be. */ static const u8 *procarr(const u8 *restrict buf, i32 nmemb, uint size, struct nbt_array *restrict out) { usize len = nmemb * size; *out = (struct nbt_array){ out->nmemb = nmemb, out->dat = malloc(len), }; if (!out->dat) return buf + len; memcpy(out->dat, buf, len); buf += len; /* Only include this code for little-endian systems. Since only they require this logic. * Producing optimised code for other platforms. */ #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ if (size == 1) return buf; i32 i = 0; while (i < nmemb) { switch (size) { case 2: ((u16 *)out->dat)[i] = be16toh(((u16 *)out->dat)[i]); break; case 4: ((u32 *)out->dat)[i] = be16toh(((u32 *)out->dat)[i]); break; case 8: ((u64 *)out->dat)[i] = be16toh(((u64 *)out->dat)[i]); break; default: __builtin_unreachable(); // this should be impossible } i += size; } #endif return buf; } /* calls `procarr` for the simple types available. */ static const u8 *proclist(const u8 *restrict buf, struct nbt_array *restrict out) { uint size; switch (*(u8 *)buf) { case NBT_I8: size = 1; break; case NBT_I16: size = 2; break; case NBT_I32: // fall through case NBT_F32: size = 4; break; case NBT_I64: // fall though case NBT_F64: size = 8; break; default: return NULL; } buf++; i32 len; memcpy(&len, buf, 4); len = be32toh(len); buf += 4; return procarr(buf, len, size, out); } const u8 *nbt_proctag(const u8 *restrict buf, u16 slen, void *restrict out) { const u8 *ptr, *tmp; ptr = buf + 3 + slen; i32 nmem; uint size; switch (*buf) { case NBT_I8: *(u8 *)out = *ptr; return ptr + 1; case NBT_I16: *(u16 *)out = buftoh16(ptr); return ptr + 2; case NBT_I32: // fall through case NBT_F32: *(u32 *)out = buftoh32(ptr); return ptr + 4; case NBT_I64: // fall through case NBT_F64: *(u64 *)out = buftoh64(ptr); return ptr + 8; case NBT_STR: nmem = buftoh16(ptr), size = 1, ptr += 2; break; case NBT_ARR_I8: nmem = buftoh32(ptr), size = 1, ptr += 4; break; case NBT_ARR_I32: nmem = buftoh32(ptr), size = 4, ptr += 4; break; case NBT_ARR_I64: nmem = buftoh32(ptr), size = 8, ptr += 4; break; case NBT_LIST: return proclist(ptr, (struct nbt_array *)out); return tmp; default: return NULL; } return procarr(ptr, nmem, size, (struct nbt_array *)out); } /* handles incrementing to the next tag in the case of `NBT_LIST`. This function shan't return `NULL`. * `ptr` is assumed to be the start of the `NBT_LIST` data, e.i. The list's ID, followed by the list's length. * If `ID` is `NBT_I8`, `NBT_I16`, `NBT_I32`, `NBT_I64`, `NBT_F32`, or `NBT_F64`, the entire list length is computed and returned. * For other types this won't be possible, and thus will add `1` to `dpt`, and write the list data to `lens` and `tags` at this new `dpt`. */ static const u8 *nexttag_list(const u8 *restrict ptr, uint *restrict const dpt, i32 *restrict const lens, u8 *restrict const tags) { const u8 *tag = ptr; ptr++; switch (*tag) { case NBT_END: break; case NBT_I8: ptr += (i32)buftoh32(ptr) * 1; break; case NBT_I16: ptr += (i32)buftoh32(ptr) * 2; break; case NBT_I32: // fall through case NBT_F32: ptr += (i32)buftoh32(ptr) * 4; break; case NBT_I64: // fall through case NBT_F64: ptr += (i32)buftoh32(ptr) * 8; break; default: // TODO: handle out of bounds... Might not be required if we use flexible array member (*dpt)++; tags[*dpt] = *tag; lens[*dpt] = (i32)buftoh32(ptr); break; } ptr += 4; return ptr; } /* increments to the next tag and returns it (or `NULL`) * - `tag` represents the start of the tag, e.i. The tag ID, or in the case of `NBT_LIST` data, the start of this data. * - `dpt` shall point to the "depth" we're at, this is used as index for `lens` and `tags` * - `lens` shall contain `MAX_DEPTH` of items representing the list length, if the current item is non-zero we shall assume we're in a list. * Where the value is decremented until we reach `0`. * - `tags` shall contain `MAX_DEPTH` of items representing the list's stored type. */ static const u8 *nexttag(const u8 *restrict tag, uint *restrict const dpt, i32 *restrict const lens, u8 *restrict const tags) { u8 type; const u8 *ptr = tag; if (lens[*dpt]) { type = tags[*dpt]; lens[*dpt]--; *dpt -= !lens[*dpt]; } else { type = *tag; ptr += buftoh16(tag + 1) + 3; } switch (type) { case NBT_I8: ptr += 1; break; case NBT_I16: ptr += 2; break; case NBT_I32: // fall through case NBT_F32: ptr += 4; break; case NBT_I64: // fall through case NBT_F64: ptr += 8; break; case NBT_ARR_I8: ptr += 4 + (i32)buftoh32(ptr) * 1; break; case NBT_ARR_I32: ptr += 4 + (i32)buftoh32(ptr) * 4; break; case NBT_ARR_I64: ptr += 4 + (i32)buftoh32(ptr) * 8; break; case NBT_STR: ptr += 2 + (u16)buftoh16(ptr) * 1; break; case NBT_END: (*dpt)--; break; case NBT_COMPOUND: (*dpt)++; break; case NBT_LIST: ptr = nexttag_list(ptr, dpt, lens, tags); break; default: return NULL; // unexpected value; buffer is likely corrupt } return ptr; } /* TODO: write test cases for this function: * - list:compound... * - non-existent type * - compound:list:int32 * - string */ const u8 *nbt_nexttag(const u8 *restrict buf) { const u8 *tag; u8 tags[MAX_DEPTH] = {0}; i32 lens[MAX_DEPTH] = {0}; uint dpt = 0; tag = buf; do { tag = nexttag(tag, &dpt, lens, tags); } while (dpt > 0); return tag; }